SIENTIA™ Log Libraryies

Home

  • Introduction

Modules

  • Basic Tracker
  • Simple Tracker
  • Regression Tracker

Quick Start

  • Simple Tracker Notebook
  • Regression Tracker Notebook
SIENTIA™ Log Libraryies
  • Quick Start
  • Regression Tracker Notebook

Initialize tracking emulating how SIENTIA™ website environment works¶

In [1]:
Copied!
import sientia_tracker.regression as regression


# Initialize tracking
tracking_uri = "file:./tmp/mlruns"
username = "example_user"
password = "example_password"
project_name = "example_project_regression"

tracker = regression.RegressionTracker(tracking_uri,username,password)
tracker.set_project(project_name)
import sientia_tracker.regression as regression # Initialize tracking tracking_uri = "file:./tmp/mlruns" username = "example_user" password = "example_password" project_name = "example_project_regression" tracker = regression.RegressionTracker(tracking_uri,username,password) tracker.set_project(project_name)
Experiment example_project_regression already exists

Set parameters needed to save the model. They are: the experiment name, inputs, training size, a flag to indicate if the data was shuffled¶

In [2]:
Copied!
dataset_name= "California Housing"
inputs= "MedInc, HouseAge, AveRooms, AveOccup, Latitude, Longitude"
train_size = 0.8
shuffle = False
dataset_name= "California Housing" inputs= "MedInc, HouseAge, AveRooms, AveOccup, Latitude, Longitude" train_size = 0.8 shuffle = False

Load the dataset and create a model using default values of the run parameters¶

In [3]:
Copied!
from sklearn.tree import DecisionTreeRegressor
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split
from sklearn.metrics import r2_score


# Load dataset
data = fetch_california_housing()
X = data.data
y = data.target

# Split data
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = train_size, random_state=42, shuffle=shuffle)

# Initialize and train model
model = DecisionTreeRegressor()
model.fit(X_train, y_train)

# Make predictions
y_pred = model.predict(X_test)

# Calculate metrics
r2 = r2_score(y_test, y_pred)
from sklearn.tree import DecisionTreeRegressor from sklearn.datasets import fetch_california_housing from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score # Load dataset data = fetch_california_housing() X = data.data y = data.target # Split data X_train, X_test, y_train, y_test = train_test_split(X, y, train_size = train_size, random_state=42, shuffle=shuffle) # Initialize and train model model = DecisionTreeRegressor() model.fit(X_train, y_train) # Make predictions y_pred = model.predict(X_test) # Calculate metrics r2 = r2_score(y_test, y_pred)

Initialize run¶

In [4]:
Copied!
run = tracker.save_experiment(model, dataset_name=dataset_name, inputs=inputs, train_size=train_size, r2=r2,shuffle=shuffle)
run_id = run.info.run_id
run = tracker.save_experiment(model, dataset_name=dataset_name, inputs=inputs, train_size=train_size, r2=r2,shuffle=shuffle) run_id = run.info.run_id
Saving experiment example_project_regression

Log models and metrics¶

In [5]:
Copied!
# Log parameters and metrics
tracker.log_params({"max_iter": 1000})
# Log model
artifact_path = "Regression_for_CaliforniaHousing"
tracker.log_model(model, artifact_path)
# Log parameters and metrics tracker.log_params({"max_iter": 1000}) # Log model artifact_path = "Regression_for_CaliforniaHousing" tracker.log_model(model, artifact_path)

Retrieve information of run¶

In [6]:
Copied!
# Retrieve the run using the run ID
retrieved_run = tracker.client.get_run(run_id)

# Access and print metrics and params 
metrics = retrieved_run.data.metrics
params = retrieved_run.data.params
print("Metrics:", metrics)
for key, value in params.items():
    print( key,':' ,value)
# Retrieve the run using the run ID retrieved_run = tracker.client.get_run(run_id) # Access and print metrics and params metrics = retrieved_run.data.metrics params = retrieved_run.data.params print("Metrics:", metrics) for key, value in params.items(): print( key,':' ,value)
Metrics: {'r2': 0.41770236548696527}
Dataset : California Housing
Date Column : date
Inputs : MedInc, HouseAge, AveRooms, AveOccup, Latitude, Longitude
max_iter : 1000
Model : Linear Regression
Shuffle : False
Target : target
Train Size : 0.8
Previous

Built with MkDocs using a theme provided by Read the Docs.
« Previous